Locally conformal flat Riemannian manifolds with constant principal Ricci curvatures and locally conformal flat C-spaces

نویسندگان

  • Stefan Ivanov
  • Irina Petrova
چکیده

It is proved that every locally conformal flat Riemannian manifold all of whose Jacobi operators have constant eigenvalues along every geodesic is with constant principal Ricci curvatures. A local classification (up to an isometry) of locally conformal flat Riemannian manifold with constant Ricci eigenvalues is given in dimensions 4, 5, 6, 7 and 8. It is shown that any n-dimensional (4 ≤ n ≤ 8) locally conformal flat Riemannian manifold with constant principal Ricci curvatures is a Riemannian locally symmetric space. Running title: Constant Ricci eigenvalues and C-spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

Conformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds

The main result of this paper is that a Lorentzian manifold is locally conformally equivalent to a manifold with recurrent lightlike vector field and totally isotropic Ricci tensor if and only if its conformal tractor holonomy admits a 2-dimensional totally isotropic invariant subspace. Furthermore, for semi-Riemannian manifolds of arbitrary signature we prove that the conformal holonomy algebr...

متن کامل

Conformally flat Einstein-like 4-manifolds and conformally flat Riemannian 4-manifolds all of whose Jacobi operators have parallel eigenspaces along every geodesic

A local classification of all locally conformal flat Riemannian 4-manifolds whose Ricci tensor satisfies the equation ∇ ( ρ− 1 6 sg ) = 1 18 ds⊙ g as well as a local classification of all locally conformal flat Riemannian 4-manifolds for which all Jacobi operators have parallel eigenspaces along every geodesic is given. Non-trivial explicit examples are presented. The problem of local descripti...

متن کامل

Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds

Consider a manifold constructed by identifying the boundaries of Euclidean triangles or Euclidean tetrahedra. When these form a closed topological manifold, we call such spaces piecewise flat manifolds (see Definition 1) as in [8]. Such spaces may be considered discrete analogues of Riemannian manifolds, in that their geometry can be described locally by a finite number of parameters, and the s...

متن کامل

Compactness for Conformal Metrics with Constant Q Curvature on Locally Conformally Flat Manifolds

In this note we study the conformal metrics of constant Q curvature on closed locally conformally flat manifolds. We prove that for a closed locally conformally flat manifold of dimension n ≥ 5 and with Poincarë exponent less than n−4 2 , the set of conformal metrics of positive constant Q and positive scalar curvature is compact in the C∞ topology.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997